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Abstract--Linear thermoelastic problems are solved for the thermal stress and displacement fields in an elastic
solid of infinite extent weakened by a plane of discontinuity or crack occupying the space outside of a circular
region. The faces of the crack are heated by maintaining them at certain temperature and/or by some prescribed
heat flux the distributions of which are such that their magnitudes diminish at infinity. Special emphasis is given
to the case when the circular region surrounded by the external crack is insulated from heat flow. The solution to
this thermal stress problem may be combined with that of applying appropriate tractions to the crack faces.
thus providing the necessary ingredients for extending the Dugdale hypothesis to thermally-stressed bodies
containing cracks. More specifically. the results of the analysis permit an estimate of the plastic zone size and
the plastic energy dissipation for an external circular crack. Information of this kind contributes to the under­
standing of the mechanics of fracture initiation in ductile materials.

INTRODUCTION

PREVIOUS efforts on steady-state thermoelastic problems have been focused mainly on
problems dealing with bars, plates and cylinders. A complete account ofthese developments
is clearly beyond the scope of this article. On the other hand, systematic study of the effect
of plane cracks on thermal stresses set up in an elastic solid has a quite recent history
started in the past few years.

Beginning with the work of Olesiak and Sneddon [1], the method of dual integral
equations in the Hankel transforms was used to determine the distribution of temperature
and stress in a solid containing a penny-shaped crack across whose surfaces there is a
prescribed flux of heat. By having the same thermal conditions on the upper and lower
faces of the crack, the problem was reduced to one of specifying certain mixed boundary
conditions on a semi-infinite solid. The case of heat supplied antisymmetrically with respect
to the crack plane was treated by Florence and Goodier [2]. Using potential function theory,
Kassir and Sih [3] presented explicit solutions to a class ofthree-dimensional thermal stress
problems with an elliptical crack whose faces are thermally disturbed by both symmetric
and antisymmetric temperatures and/or temperature gradients. Their results include those
in [1, 2] as limiting cases. Further, Kassir and Sih [3] showed that for any small region
around the outer boundary of an elliptically-shaped crack the thermal stresses and dis­
placements correspond to a situation which is locally one of plane strain as derived earlier
by Sih [4] using the equations of two-dimensional thermoelasticity.

* The research work presented in this paper was obtained in the course of an investigation conducted under
Grant NGR-39-007-025 with the National Aeronautics and Space Administration.
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This investigation presents an analysis of the steady-state axisymmetric thermoelastic
problem concerning two semi-infinite solids joined over a circular region. The unconnected
portion ofthe solids may be regarded as an external penny-shaped crack. Thermal boundary
conditions are standard in that the temperature or heat flux must be known at the surfaces of
the crack in such a way that the temperature distribution in the solid is determined uniquely.
With this temperature distribution known, introduction of a thermoelastic potential
reduces the problem to one in axisymmetric isothermal elasticity with body forces.

The circular region connecting the two semi-infinite solids is assumed to be insulated*
from heat flow, while the crack surface is heated by temperature T(r) that may vary as a
function of the radial distance r from the center of the circular region of unit radius. Two
special cases are considered in detail. In the first case, T(r) is a constant prescribed over an
annular region surrounding the circle r = 1. In the second case, it is assumed that the
function T(r) varies according to r- n

, where n > 1. The problem in which the crack surface
is heated by some flux of heat may be solved in the same fashion.

Another objective of this work is to calculate the stress-intensity factors [5J the critical
values of which control the onset of crack propagation in brittle materials. For ductile
materials, the Dugdale hypothesis [6J may be adopted by assuming that the plastic zone
developed at the crack border can be approximated by a very thin layer in the form of a
ring. An estimate of the plastic energy dissipation of the crack can also be obtained from the
results presented in this paper.

AXISYMMETRIC EQUATIONS OF THERMOELASTICITY

Let an external penny-shaped crack be situated in the plane z = 0 and be opened
out by the application of heat to its surfaces such that the deformation is symmetrical
about the z-axis. Referring to cylindrical coordinates (r, e, z), the stress components are
independent of the angle e, and all derivatives with respect to evanish. The components
of the displacement vector u for axially symmetrical deformation are (u, 0, w), and the non­
vanishing components of the stress tensor (J will be denoted by (I" (Io, (Iz and ',z.

If the heat flux vector does not depend on the components of strain, then the displace­
ment equations of equilibrium become

(
iJ

2
U liJu u)2(1-v) -+---- +(1

iJr2 r iJr r2

(
iJ

2W lOW)(1-2v) -+~- +2(1or2 r or

a2u iJ2 w iJT
2v~iJ2 +-iJ.., = 2(1 + v)cx-;),

zr oz or

02W 0 (OU u) aTVh+- -;:;--+- = 2(I+v)a-,
OZ OZ or r az

(1)

and can be solved independently from the equation of steady-state heat conduction

\12T(r, z) = o.

Here, T is the temperature increase referred to some reference state and \12 stands for

a2 I 0 a2

+~-+--.

r or az2

(2)

. * No additional difficulties are encountered if heat is allowed to flow through thc circular region. Alterations
In the thermal boundary conditions are discussed in the Appendix.
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In equations (1), IX is the coefficient of linear expansion and v is Poisson's ratio of the
material.

When both the mechanical and thermal properties of the solid are assumed to be iso­
tropic and homogeneous, the stress components may be obtained from the displacement
components by means of the Duhamel-Neumann law, which in dyadic notation takes the
form

(J = J1{VU+UV + 1~2)VV. u-(1 +V)IXIlI } , (3)

in which J1 is the shear modulus, I the unit dyad and V the usual del operator.
Kassir and Sih [3]* have shown that the solution of equations (1) may be represented in

terms of certain harmonic functions for problems involving surfaces of discontinuities or
plane cracks. Suppose that the displacements and stresses induced by T are of the sym­
metric pattern, then

even 10 Z

(4)
odd in z

Adopting equations (12) in [3] to the axisymmetric problem under consideration, the
displacements uand w can be expressed in terms oftwo harmonic functionsf(r, z) and n(r, z);

of foo on of
u = (1-2v)- + -dz+z-,or z or or
w = _2(l_v)of +zoF,

oz OZ

where

and

(5)

V 2f(r, z) = 0, V2n(r, z) = o.

The thermoelastic potential n(r, z) can be determined from the temperature field as

on 1(1 +v)
OZ ="2 I-v IXT(r, z), (6)

and can be associated with the Boussinesq logarithmic potential for a disk whose boundary
conforms to that ofa crack. At infinity, although the potential n(r, z) is permitted to become
unbounded, the regularity condition of the displacement vector requires n(r, z) to have
bounded derivatives of all orders with respect to rand z. The limits of integration appear­
ing in the first of equations (5) were chosen to ensure the boundness of u as z --+ 00.

* The harmonic-function representation in [3] was developed originally for solving non-axially symmetric
problems of plane cracks.
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Now, substituting equations (5) into (3) yield the following expressions for the stresses:

(Jr a2f a2f foo 02n on 02F
~ = (l-2v)--2v-+ -dz-2-+z-,
2/1 or2 OZ2 z or2 oz or2

(Jo = (l-v)~ of _2v02f+~ (00 an dz-in+z~ of,
2/1 r or OZ2 r Jz or oz r or

(J, of 02F
----"-= --+z-
2/1 oz OZ2 '

Trz = z02F T
rO

= To
z

= O.
2/1 oroz'

(7)

Considerations of the evenness and oddness of the displacements and stresses as stated
in equations (4) together with the prescribed thermal conditions on the crack surfaces
reduce the crack problem to one of an elastic half-space with mixed boundary conditions
on the plane z = O. In view of symmetry, the plane z = 0 must be free from the shearing
stress T rz and w(r, 0) must vanish inside the circular region r ~ 1. Without loss in generality,
the crack surfaces may be assumed to be free from mechanical loads, i.e. (Jz = 0 for r ~ 1
and z = O±. The case when the external penny-shaped crack is subjected to surface tractions
has already been treated by Lowengrub and Sneddon [7],* and will not be repeated here.
Thus, the requisite thermal and elastic boundary conditions on the plane z = 0 are taken
to be

oT = 0 o~ r < 1,OZ '

T = T(r), r> 1,

ane

w = 0, o~ r < I,

(Jz = 0, r> 1,

T rz = 0, o~ r < XJ.

(8)

(9)

It should be mentioned that the antisymmetric problem in which

odd in z

even III Z
(10)

may also be formulated by following the procedure of Kassir and Sih [3]. Hence, the two
problems, one symmetric and the other antisymmetric, may be superimposed to yield the
solution to problems of the infinite solid with any thermal conditions specified on the
external penny-shaped crack.

• In what follows, their solution [7J will be added onto that obtained in this paper for computing the size of
the plastic zone at the crack boundary.
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STEADY-STATE TEMPERATURE DISTRIBUTION
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For a semi-infinite solid z ~ 0 that is free from disturbance at infinity, the appropriate
solution of equation (2) is [1]

T(r, z) = {,() A(s) e -sz Jo(rs) ds, z ~ O. (11 )

In equation (11), J 0 is the zero order Bessel function of the first kind and A(s) is a function
of the parameter s to be determined from the thermal boundary conditions in equations (8)
with T(r) = Tog(r), where To is a constant. The function g(r) is to be bounded at infinity and
the integral

{OO g(r) dr,

is to be absolutely convergent.
With the help of equation (11), the conditions in equation (8) lead to the dual integral

equations

LOO
sA(s)Jo(rs)ds = 0,

{OO A(s)Jo(rs) ds = Tog(r),

O:::::;r<1

r> 1

(12)

which determine the only unknown A(s). The solution of these equations has been given
by many previous authors* and can be found in the open literature:

(13)

Upon defining the function

equation (13) becomes

A(s) = _ {OO sin(st)q/(t) dt,

(14)

(15)

(16)

where cj>'(t) = dcj>ldt. equation (15) may be inserted into equation (11) to give the tempera­
ture distribution throughout the solid. However, for the purpose of setting up the mechani­
cal boundary conditions in the subsequent work, it suffices to compute the temperature on
the plane z = O. It may be shown that

T( ) = _ foo cj>'(t) dt
r,o J 2 2'

maxi l.r) (t - r )

* See for example [8].
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in which cfJ'(t) can be calculated from equation (14) once g(r) is given. Two examples of
interest will be cited.

(1) Consider the problem of heating up the faces of an external circular crack over a
ring whose inner and outer radii are unity and a, respectively. In this case, g(r) takes the
form

r > 1f
1' a > r

g(r) = H(a-r) = ,
0, a < r

where H(r) represents the Heaviside step function. A straightforward calculation gives

(17)

and hence T(r, 0) may be found from equation (16). The result is

2 fa t dt 2 ( a
2

- 1)!
T(r, 0) = ~To 1 ~[(a2-t2)(t2-r2)J = ~Tosin-l a2_? '

and the condition T(r,O) = To for r > 1 is obviously satisfied.
(2) If the temperature variation on the crack faces is such that

O:(r< 1 (18)

g(r) = r- n
, n> 1; r > 1 (19)

then equation (14) yields

(20)n> 1.O:(r<l;

cfJ(t) = To r(n/2 -i)t l -n n > 1
~n r(n/z) ,

where r(n) is the Gamma function. Putting cfJ(t) into equation (16) and carrying out the
integration, T(r,O) is obtained:

'f,(r 0) = To(n-l)['(n/2--!)r- nB 2(~ ~)
, r(n/2)2~n r 2'2 '

Re[mJ > 0;

Note that Bx(m, n) is the incomplete Beta function defined by

Bx(m,n) = J: ym-l(l_y)n-1 dy, Re[nJ > 0.

The complete Beta function B(m,n) may be related to the Gamma functions as

B( ) = (1 m-l(l_ )n-I d = r(m)r(n)
m, n J

o
y y y r(m +n)'

When n = 2, 3, etc., the incomplete Beta function in equation (20) reduces to elementary
functions:

(a) n = 2.

(b) n = 3.

To 2 'T(r,O) = 2[1-(1- r )2J,
r

O:(r<l

2TO • 1 2 ~
T(r,O) = -3[slO - r- r(l- r )'J,

nr
O:(r<1.
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Similar expressions of T(r, 0) for other values of n may also be deduced, but they will not be
considered here. For r > 1, the prescribed temperature distribution of T(r, 0) = Tor- n can·
be easily recovered from equation (16).

Temperature distributions corresponding to other types of thermal boundary conditions
are worked out in the Appendix.

THERMAL STRESSES AND DISPLACEMENTS

It is seen from equations (5) and (7) that the evaluation of the displacements and stresses
does not warrant an explicit expression of the thermo-elastic potential n(r, z) with respect
to rand z.

First of all, equations (6) and (11) may be combined to eliminate T(r, z):

from which

an 1(1 + v) foo~ = - _. rx A(s)e-szJo(rs)da,
oz 2 1+ v 0

an l(l+V) f.oo~o = - -- rx A(s) e-szJ l(rs) ds,
r 2 I-v 0

z;;?: 0,

z ;;?: 0,

(21)

(22)

is obtained. The arbitrary function of integration may be set to zero, since onlor must vanish
in the limit as z -+ 00. Equation (22) may be integrated with respect to z giving

S
OOon l(l+V) fOOl

Z or dz = 2 I-v rx J
o

~A(s)e-szJl(rs)ds, z;;?: O. (23)

Having determined the temperature field T(r, z) or A(s) for various prescribed thermal
conditions, it is clear that the quantities

on
oz' S

OOon
_ or dz, etc.

appearing in equations (5) and (7) can be calculated in a straightforward manner.
It is now more pertinent to find the unknown harmonic function ofloz from the remain­

ing mechanical boundary conditions in equations (9). A quick glance at equations (7) reveals
that on the plane z = 0, <,z vanishes automatically and the remaining two conditions in
equations (9) require that

where

of = 0 0 & r < 1oz ' ~

~~ -M: ~:)rxT(r, 0), r> 1
(24)

af
oz' as
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(25)z ~ O.

Taking into account the axisymmetric nature of the thermal loading, iJfloz may be repre­
sented by the Hankel integral

Df J" 1:;- = - B(s) e -szJ o(rs) ds,
uZ 0 s

By virtue of equations (24), the function B(s) has to be found from the pair of simultaneous
equations

(26)

r < 1

o~ r < IJ
OC!I

- B(s)Jo(rs) ds = 0,
o s

f
OC! . I(1+v)B(s)Jo(rs) ds = - ~ exT(r),
0, 2 I-v

in which T(r) represents the axisymmetric temperature variation prescribed on the plane
z = O. Lowengrub and Sneddon [8] and others have shown that the satisfaction ofequations
(26) can be achieved by expressing B(s) in terms of the function

(27)

through an integral of the form

(28)B(s) s {OC! t/t(t) cos(st) dt.

With a knowledge of B(s), the problem of determining the displacements and stresses in
the elastic solid is reduced to quadrature.

For the purpose of finding the displacements on the crack surfaces, it may be shown
that for z = 0

r > 1

O~r<1
(29)

and

(30)
r> 1

O~r<1.
{f

OC!' fOC! tt/t(t) dt
of =! 1 t/t(t)dt- , .)(t2 _r2 )'

dr r fOC!
1 [1- t(tZ

- r2 )--t]t/t(t) dt,

Hence, equations (23), (29) and (30) may be substituted into equation (5) and the resulting
expression for the displacement on the crack plane are

u(r,O) 1(I+V) fOC! 1 l[fOC! fC<J tt/t(t)dt J- - ex -A(s)J 1(rs)ds+(1-2v)- t/J(t)dt- I(-Z-2 '
21-vos r 1 ''It r)

r > 1

(31)

f' t/t(t) dt
w(r,O) = 2(1- v) 1 .)(r2 _ e)' r> 1.
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Similarly, the displacements u and w for points inside the circular region of unit radius
can be found:

1(1 + v) f.oo 1 1 f.oou(r,O) = - - rx -A(s)J t(rs)ds+(1-2v)- [1-t(t 2 -r2 )-1]l/J(t)dt,
2 I-v 0 s r 0

w(r,O) = 0, °::::.; r < 1

0::::.; r < 1

(32)

The functions A(s) and l/J(t) in the above expressions are defined by equations (15) and (27),
respectively.

Of particular interest is the stress component (Jz from which the crack-border stress­
intensity factor formula may be extracted. This factor has been known to control the
instability behavior of cracks in the theory of brittle fracture [5]. To this end, equations (6),
(25) and (28) are substituted into the third of equations (7) and hence for z = °(Jz becomes

Therefore, it is not difficult to show that

o::::';r<1 (33)

and (JAr,O) = °for r > 1. Notice that only the leading term in equation (33) contributes
to the singular behavior of (Jz, while the other two expressions are bounded as r --+ 1.
Thus, by letting I:: = 1- r and I:: --+ 0, (Jz becomes

2/ll/J(1)
(JAr,O) = - J(21::) + .,.

where terms of order higher than I:: -1 have been dropped. The coefficient of 1/J(21::), say k1 .

is the crack-border stress-intensity factor for the opening mode of crack extension, i.e.

(34)

By the same procedure, the other stress components may also be expressed in terms of
T(r), the prescribed temperature distribution on the crack.

EXTERNAL CRACK AROUND INSULATED CIRCULAR REGION

To fix ideas, the displacements and stresses on the plane z = °corresponding to
the temperature distribution discussed earlier may be expressed explicitly in terms of
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T(r) = Tog(r). Appropriate elimination of A(s) and l/!(t) in equations (31) and (32) gives the
displacement field.

and

(
l+v)aTou(r,O) = -----
1 v nr

(35)

r>1
(36)

Equation (27) may be combined with equation (33) to put the normal stress component
in the form

O'-;:;r<I

(37)

r> 1

where E is Young's modulus of elasticity. In deriving equation (37), it is interesting to note
that the two non-singular terms in equation (33) cancelled each other.

Let g(r) in equations (35) to (37) be given by equations (17) and (19). The calculation of
U, wand (Jz involves a considerable amount of detailed work which will be omitted. The
final results are:

(38)

0'-;:; r < 1

I<r<a

(1) Step function

In this case, the displacement component in the radial direction is

[ (
aZ-l)t

v.J(aZ-1)(1-.J(1- rZ)+O- v)aZ sin -1~

( r
Z

) (aZ-l)tJ- .I-az sin- 1 aZ_rz '

v.J(a
Z
-l)+(1-v)a

Z
[~(~r sin-1(~)l(

1+ v) aTou(r,O)= ---
I-v nr

r>a



Thermal stresses in a solid weakened by an external circular crack

and the normal displacement component is given by

0, °~ r < 1

w(r, 0) = _2(1+v)caTo ~[E(~,~)-E(~,ext)J 1 <r<a
n

E (~, ~) - E (~, ex2) - (1- ;:) [ K (~, ~) - K (~, ex2)J

361

(39)

r > a

in which E(r/a, exl) and K(a/r, ex2) are the incomplete elliptic integrals of the second and
first kind, respectively, where

ex l = sin-l(~), 0< ex l < ~ and ex2 = sin-l(~), 0< ex2 < ~

When ex l or ex2 --+ n/2, E and K become the complete elliptic integrals. The normal stre~ s
component is

( 0) = _ ErxTo (1- 2)-! {.J(a
2
-1),

(Jz r, (1) r-vn 0,

and it follows that

EexTo / 2
k l = -~(-)-,,(a -1).

1-vn

O~r<l

r> 1
(40)

(41)

°~ r < 1 (42)

(2) Radial decay

Ifthe temperature on the crack varies in accordance with equation (19), then for n > 2

u(r 0) = ~(1 +v) ex ToQ(n/2) - !]
, 2 1- v .J(n)rr(n/2)

{

1- J (1_r
2
)+(1 +v{n~2 -r2-nBr2(~-1,~)1

1 2(1- v) J(n)r(n/2) 2 -nJ
+ n-2 1- Q (n-1)/2{ , r> 1

and for n > 1

( 0)
= _(1+V)exTor[(n/2)-!]{0, °~ r < 1

w~ / 1 12,,(n)r(n/2) r -nBl_r~2b~, 1-(n/2)],

For g(r) = r- n and n > 1, equation (37) reduces to

r> 1
(43)

{

J(n) Q(n/2)-!]

(J.(r,O) = _ EexTo (1-r2)-! 2 r(n/2) ,
(1-v)n 0, r> 1

Therefore, the k l-factor is obtained:

°~ r < 1
(44)

ErxToQ(n/2) -!]
2(1- v).J(n)r(n/2)'

n > 1 (45)
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(47)

To recapitulate, the stress-intensity factors given in equations (41) and (45) can be
associated with the forces which motivate and produce crack extension owing to thermal
disturbances. The critical values of k 1 for a particular material can usually be measured
experimentally. Moreover, if the material undergoes plastic yielding at the crack border,
where the thermal stresses are exceedingly high, there will be a localized zone of plasticity
surrounding the periphery of the crack. The size of this plastic zone for an external penny­
shaped crack will be estimated in the next section.

THERMAL PLASTIC ZONE SIZE

An ideal elastic-plastic model for the plane extension problem of a straight crack in a
thin sheet has been proposed by Dugdale [6]. This model will be adopted to estimate the
extent of plastic yielding at the edge of an external circular crack. The material near the
crack is assumed to flow after yielding at a constant tensile stress qo and the plastic zone is
confined to a thin layer of width w around the uncracked portion of the plane z = O. The
parameter w will be determined from the finiteness condition of (Jz at the leading edge of the
plastic zone.

Mathematically, the solid may be assumed to deform elastically under the action of
thermal loading together with a mechanical compressive stress, -qo, distributed over the
surface ofa ring of inner radius r = 1 and outer radius r = 1+w. For this problem, (Jz can
be obtained by superimposing the solution of Lowengrub and Sneddon [7J onto that of
equation (37). The normal stress component for the combined thermal and mechanical
problem is

I

E [ rxTo foo Yfg(Yf) dYf cPl(l)] E foo <j>'1(t) dt 0 ~ r < 1
J(l-r2) -(l-v)n: 1 J(Yf2_ t2)+ I+v +I+v 1 .J(t2_ r2)'

(Jz(r, 0) = (46)
-p(r), r>1

where

and

p(r) = +goH(l +w-r).

Since (J= is to be bounded at r = I, the singular terms in equation (46) must be removed by
taking

Setting 2/1( 1+ v) = E and performing the integration with respect to ~ lead to the equation

f
y~ Yfg(Yf) dYf

ErxTo 1 J(Yf2 _ t2) = +2(1- v)qoJ[w(w +2)J,

for evaluating the plastic zone size w. For illustration, formulas for ware worked out for
the two previously mentioned examples.
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(1) If g(r) = H(1 +f3-r), then equation (47) may be integrated and solved for w:

w = - 1+[1 +13(13 +2)y2J+.
The quantity

ErxTo}' = +-----'--
2(1- v)qo'

363

(48)

may be interpreted as the ratio of the applied thermal stress to the yield stress of the material
qo, and r~ in equation (48) is the width of the region heated by the constant temperature To·
A plot of w vs. y for various values of 13 are shown in Fig. 1. The curves are similar in trend
to that found by Dugdale [6J for the two-dimensional problem of an isothermal crack.

:3 6.0

J:
f0-e
~

LlJ
Z
0
N

U 4.0
i=
Vl
cl:
..J
D-

e
LlJ
N
:J
cl:
::li!
0::

2.00z

o 0.2 0.4 0.6 0.8

STRESS RATIO, Y

1.0

(49)

FIG. I. Widths of plastic zone for constant heating.

(2) For g(r) = r- n with n > 1, the plastic zone size is found to be

w = -1 +{ 1+~[/[~{~}2~tJrr
whose variations with y for different values of n are plotted in Fig. 2. As to be expected, the
size of the plastic zone increases as the temperature To is raised.
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FIG.2. Widths of plastic zone for temperature decaying radially.

1 <r<a

DISPLACEMENTS NORMAL TO CRACK SURFACES

At the leading edge of the external circular crack, the tangent to the normal displace­
ment w(r,O) coincides with the uncracked portion of the plane z = O. In other words, the
surfaces of the crack close smoothly as predicted in the Barenblatt model [10]. This may be
verified for the two examples discussed earlier.

(1) Step function

From equation (39) and equations (4.7) and (5.4) in [7], it is found that

w(r,O) = ~(I+V){-a(1+!3)To[EL:/r~) -E(1:!3,a t )]

+2(1- v)(1 +W)~[E( 1~W'~) -E( 1~W' at) ]},
Hence, as r ....... 1 the result

2(1 + v)
>J 2 1)[2(1-v)qo>J{w(w+2)}- EaTo>J{!3(!3+2)}]+ ...

reEr (r -

is obtained. The quantity between the brackets vanish by virtue of equation (48) which
determines the size of the plastic zone. This implies that the crack surfaces close smoothly.

(2) Radial decay

Similarly, using equation (43) in conjunction with equations (4.7) and (5.4) in [7] lead to

(
ow) = l+v [4(1-V)>J{W(W+2)}_ aTor[(nj2)-!] + ...
or z=o r>J(r2 -1) reE >Jrer(nj2)

Because of equation (49), the above expression vanishes in the limit as r --> 1.
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The plastic energy dissipation around the leading edge of the external crack may be
calculated by assuming the radius of the uncracked portion of the solid (z = 0, 0 ~ r < 1)
decrease slowly under a constant value of y. This decrease in the radius is accompanied by
a small change !1w in the width of plastic zone w such that

!1w w

!1R R

The quantity R is the radius ofthe uncracked portion ofthe solid which has been taken to be
unity in the present analysis.

By neglecting terms of order higher than the first in dR the plastic dissipation is given by

fr=R+W (aw)
!dWp = qo -a 2nrdr

r=R R z=O

Now, the displacement w(r, 0) can be expressed in terms of R and the above integral may be
calculated in a straightforward manner to yield the rate of energy dissipation per unit area
of the new surface of the external crack.

CONCLUDING REMARKS

The linear thermoelastic problem of an elastic solid containing an external penny­
shaped crack has been formulated and solved. The temperature and/or heat flux can be
applied either symmetrically or antisymmetrically with respect to the plane in which the
crack occupies. The solution offers the possibility of a theory of brittle fracture for crack
propagation caused by heating. This can be verified by experimentally measuring the
critical values of the stress-intensity factors as proposed earlier.

The obtained displacement field also permits an evaluation of the plastic energy
dissipation for cracking induced by thermal stresses.
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APPENDIX

Temperature fields pertaining to thermal boundary conditions not covered in the text
will be presented below.
Case A. Instead of applying temperature to the crack, heat flux may be specified on the
flat surfaces r > 1 and z = O±. The distribution of temperature that satisfies the set of
conditions

(50)

is given by

(51)z~OT(r, z) = - 1" [r IJQ(IJ)J o(slJ) dlJJ e -"J o(rs) ds,

Consider two special cases of Q(r):
(1) Suppose that Q(r) = QoH(a- r), where Qo is a constant. Then equation (51) may be

simplified to integrals of the Lipschitz-Hankel type

a> (52)

Such integrals have been evaluated and tabulated numerically in [9].
(2) In the case, when Q(r) = Qor- n with n > 1, the temperature field is

(53)

where

For z = 0, it may be shown that

1
~1-3Fz(i, i, n/2--i; I, I; rZ), 0< r < 1; n>
I-n

T(r,O) = Qo (54)

__I -[3FZ(1,i, I-n/2; 1, 1; l/rz)-rz-n3Fz(1,i, l-n/2; 1,2-n/2; 1)J,
(2-n)r

r> 1; 1<11<2

where mFn(a, b; c; x) is the generalized hypergeometric function. The second ofequations (54)
is valid only for values of n between 1 and 2 and hence it is somewhat limited in application.
For other values of n, equation (53) may be used.
Case B. Another possible case is when the uncracked region 0 ~ r ~ 1 and z = 0 is per­
mitted to conduct heat such that

T = {O, 0~ r < 1
Toh(r), r > 1

(55)
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and thus

(57)z~O

T(r, z) = To {oo [Il
OO

17h(r,)Jo(s17) d~S e-szJo(rs)ds, z ~ a (56)

(1) For h(r) = H(a - r), equation (56) is expressible in terms of the Lipschitz-Hankel
type of integrals •

T(r,z) = To[a {oo e-szJ1(as)Jo(rs)ds- {oo e-szJ1(s)Jo(rS)ds}

which are evaluated in [9].
(2) If h(r) = r- n and n > 1, the temperature field becomes

T(r,z) = To {oo [nll(m,s)-Jl(s)]e-szJo(rs)ds, z~O (58)

where
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A6cTpaKT-PewaIOTCR 3aj:\a'lH JlHHeHHOH TepMoynpyrocTH .z:tJIR nOJleH TepMH'IeCKHX HanpRlKeHlIH II

nepeMeweHHH B ynpyrOM 6ecKOHe'lHOM TeJle, oCJla6J1eHHbIM nJlOCKOCTblO pa3pblBa lIJlH TpeWHHOH,

3aHHMalOweH npOCTpaHCTBO BHe KpymoH 06J1aCTH. nOBepxHocTH TpeWllHbl HarpeTbl HeKoTopoH y.z:teplKH­

BalOweHcli TeMnepaTYPoH lIJlH HeKOTopbIM 3a.z:taHHbIM nOTOKOM TenJla, KOToporo BeJlH'IlIHa pacnpe.z:te­

JIeHlIli YMeHbwaeTCli B 6eCKOHe'lHOcTH. 06pawaeTcli cneQHaJlbHOe BHlIMaHlIe Ha CJlY'laH, Kor.z:ta KpyrJlali

06J1aCTb, oKpylKeHa BHewHeH TpewHHoH, lI30JlHpOBaHHa OT nOTOKa TenJla. PeweHHe 3a.z:ta'lll TepMH'IeCKHX

HanplilKeHHH MOlKHO CB1I3aTb C 3a.z:ta'leH, KOTopali npHHHMaeT cooTBeTCTBYlOwlle ClIJlbl CQellJleHlIli Ha

nOBepXHOCTliX TpeWlIHbl II TaKHM o6pa30M .l\alOWeH 3J1eMeHTbl .z:tJIli pacwllpeHlIli rHn03bl .lJ.lOr.z:tana Ha

TepMlI'IecKlI HanplilKeHHble TeJla, CO.l\eplKalOWHe TpeWHHbI. EOJlee .z:teTaJlbHO, pe3YJlbTaTbl 3Toro aHaJlH3a

.l\alOT B03MOlKHOCTb OQeHlITb npe.z:teJlbl nJlaCTlI'IeCKOH 30Hb! II .z:tHCCHnaQlIH nJlaCTH'IeCKOH 3Heprllll, ):\JllI

BHeWHHX, KpyrJlblx TpeWHH. 3aMeTKa 3Toro po.z:ta n03BaJllleT nOHlITB MexaHHKy MOMeHTa pa3pyweHHlI B

nJlaCTlI'IeCKHX MaTepHaJlax.


